Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 799
Filtrar
1.
Genetics ; 226(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38124387

RESUMO

Genes regulating recombination in specific chromosomal intervals of Neurospora crassa were described in the 1960s, but the mechanism is still unknown. For each of the rec-1, rec-2, and rec-3 genes, a single copy of the putative dominant allele, for example, rec-2SL found in St Lawrence OR74 A wild type, reduces recombination in chromosomal regions specific to that gene. However, when we sequenced the recessive allele, rec-2LG (derived from the Lindegren 1A wild type), we found that a 10 kb region in rec-2SL strains was replaced by a 2.7 kb unrelated sequence, making the "alleles" idiomorphs. When we introduced sad-1, a mutant lacking the RNA-dependent RNA polymerase that silences unpaired coding regions during meiosis into crosses heterozygous rec-2SL/rec-2LG, it increased recombination, indicating that meiotic silencing of a gene promoting recombination is responsible for dominant suppression of recombination. Consistent with this, mutation of rec-2LG by Repeat-Induced Point mutation generated an allele with multiple stop codons in the predicted rec-2 gene, which does not promote recombination and is recessive to rec-2LG. Sad-1 also relieves suppression of recombination in relevant target regions, in crosses heterozygous for rec-1 alleles and in crosses heterozygous for rec-3 alleles. We conclude that for all 3 known rec genes, 1 allele appears dominant only because meiotic silencing prevents the product of the active, "recessive," allele from stimulating recombination during meiosis. In addition, the proposed amino acid sequence of REC-2 suggests that regulation of recombination in Neurospora differs from any currently known mechanism.


Assuntos
Neurospora crassa , Neurospora , Neurospora crassa/genética , Neurospora/genética , Mutação , Mutação Puntual , Heterozigoto , Recombinação Genética , Meiose
2.
PLoS Genet ; 19(11): e1011019, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934795

RESUMO

Lineage-specific genes (LSGs) have long been postulated to play roles in the establishment of genetic barriers to intercrossing and speciation. In the genome of Neurospora crassa, most of the 670 Neurospora LSGs that are aggregated adjacent to the telomeres are clustered with 61% of the HET-domain genes, some of which regulate self-recognition and define vegetative incompatibility groups. In contrast, the LSG-encoding proteins possess few to no domains that would help to identify potential functional roles. Possible functional roles of LSGs were further assessed by performing transcriptomic profiling in genetic mutants and in response to environmental alterations, as well as examining gene knockouts for phenotypes. Among the 342 LSGs that are dynamically expressed during both asexual and sexual phases, 64% were detectable on unusual carbon sources such as furfural, a wildfire-produced chemical that is a strong inducer of sexual development, and the structurally-related furan 5-hydroxymethyl furfural (HMF). Expression of a significant portion of the LSGs was sensitive to light and temperature, factors that also regulate the switch from asexual to sexual reproduction. Furthermore, expression of the LSGs was significantly affected in the knockouts of adv-1 and pp-1 that regulate hyphal communication, and expression of more than one quarter of the LSGs was affected by perturbation of the mating locus. These observations encouraged further investigation of the roles of clustered lineage-specific and HET-domain genes in ecology and reproduction regulation in Neurospora, especially the regulation of the switch from the asexual growth to sexual reproduction, in response to dramatic environmental conditions changes.


Assuntos
Neurospora crassa , Neurospora , Neurospora/genética , Genes Fúngicos , Neurospora crassa/genética , Fenótipo , Perfilação da Expressão Gênica , Reprodução/genética , Proteínas Fúngicas/genética
3.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37313736

RESUMO

A multinucleate syncytium is a common growth form in filamentous fungi. Comprehensive functions of the syncytial state remain unknown, but it likely allows for a wide range of adaptations to enable filamentous fungi to coordinate growth, reproduction, responses to the environment, and to distribute nuclear and cytoplasmic elements across a colony. Indeed, the underlying mechanistic details of how syncytia regulate cellular and molecular processes spatiotemporally across a colony are largely unexplored. Here, we implemented a strategy to analyze the relative fitness of different nuclear populations in syncytia of Neurospora crassa, including nuclei with loss-of-function mutations in essential genes, based on production of multinucleate asexual spores using flow cytometry of pairings between strains with differentially fluorescently tagged nuclear histones. The distribution of homokaryotic and heterokaryotic asexual spores in pairings was assessed between different auxotrophic and morphological mutants, as well as with strains that were defective in somatic cell fusion or were heterokaryon incompatible. Mutant nuclei were compartmentalized into both homokaryotic and heterokaryotic asexual spores, a type of bet hedging for maintenance and evolution of mutational events, despite disadvantages to the syncytium. However, in pairings between strains that were blocked in somatic cell fusion or were heterokaryon incompatible, we observed a "winner-takes-all" phenotype, where asexual spores originating from paired strains were predominantly one genotype. These data indicate that syncytial fungal cells are permissive and tolerate a wide array of nuclear functionality, but that cells/colonies that are unable to cooperate via syncytia formation actively compete for resources.


Assuntos
Neurospora crassa , Neurospora , Neurospora crassa/genética , Neurospora crassa/metabolismo , Genes Fúngicos , Permissividade , Fenótipo , Células Gigantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética
4.
Sci Adv ; 9(26): eadh0721, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390199

RESUMO

RNA polymerase II initiates transcription either randomly or in bursts. We examined the light-dependent transcriptional activator White Collar Complex (WCC) of Neurospora to characterize the transcriptional dynamics of the strong vivid (vvd) promoter and the weaker frequency (frq) promoter. We show that WCC is not only an activator but also represses transcription by recruiting histone deacetylase 3 (HDA3). Our data suggest that bursts of frq transcription are governed by a long-lived refractory state established and maintained by WCC and HDA3 at the core promoter, whereas transcription of vvd is determined by WCC binding dynamics at an upstream activating sequence. Thus, in addition to stochastic binding of transcription factors, transcription factor-mediated repression may also influence transcriptional bursting.


Assuntos
Neurospora , Neurospora/genética , Histona Desacetilases/genética , Fatores de Transcrição/genética , Expressão Gênica
5.
J Genet ; 1012022.
Artigo em Inglês | MEDLINE | ID: mdl-36330790

RESUMO

Genome resequencing is an efficient strategy for associating mutant phenotypes with physical genomic loci (Baker 2009). A pilot study of this approach demonstrated that the Neurospora crassa genetic map was critical in narrowing the possible candidate mutations in a strain to a small number in a limited, defined region of the genome (McCluskey et al. 2011). In this study, we utilize a resequencing strategy to identify the mutations underlying the gluc-1 and gluc-2 genes in N. crassa.


Assuntos
Neurospora crassa , Neurospora , Neurospora crassa/genética , Projetos Piloto , Mutação , Análise de Sequência de DNA , Fenótipo , Neurospora/genética
6.
Annu Rev Microbiol ; 76: 305-323, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075094

RESUMO

Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the wtf system in the fission yeast Schizosaccharomyces pombe; the Sk spore killers of Neurospora species; and two spore-killer systems in Podospora anserina, Spok and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.


Assuntos
Neurospora , Schizosaccharomyces , Genes Fúngicos , Meiose , Neurospora/genética , Schizosaccharomyces/genética , Esporos Fúngicos/genética
7.
Evolution ; 76(11): 2687-2696, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148939

RESUMO

Evolution of Bateson-Dobzhansky-Muller (BDM) incompatibilities is thought to represent a key step in the formation of separate species. They are incompatible alleles that have evolved in separate populations and are exposed in hybrid offspring as hybrid sterility or lethality. In this study, we reveal a previously unconsidered mechanism promoting the formation of BDM incompatibilities, meiotic drive. Theoretical studies have evaluated the role that meiotic drive, the phenomenon whereby selfish elements bias their transmission to progeny at ratios above 50:50, plays in speciation, and have mostly concluded that drive could not result in speciation on its own. Using the model fungus Neurospora, we demonstrate that the large meiotic drive haplotypes, Sk-2 and Sk-3, contain putative sexual incompatibilities. Our experiments revealed that although crosses between Neurospora intermedia and Neurospora metzenbergii produce viable progeny at appreciable rates, when strains of N. intermedia carry Sk-2 or Sk-3 the proportion of viable progeny drops substantially. Additionally, it appears that Sk-2 and Sk-3 have accumulated different incompatibility phenotypes, consistent with their independent evolutionary history. This research illustrates how meiotic drive can contribute to reproductive isolation between populations, and thereby speciation.


Assuntos
Neurospora , Neurospora/genética , Isolamento Reprodutivo , Alelos , Fenótipo
8.
Proc Biol Sci ; 289(1980): 20220971, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946150

RESUMO

Heterokaryosis is a system in which genetically distinct nuclei coexist within the same cytoplasm. While heterokaryosis dominates the life cycle of many fungal species, the transcriptomic changes associated with the transition from homokaryosis to heterokaryosis is not well understood. Here, we analyse gene expression profiles of homokaryons and heterokaryons from three phylogenetically and reproductively isolated lineages of the filamentous ascomycete Neurospora tetrasperma. We show that heterokaryons are transcriptionally distinct from homokaryons in the sexual stage of development, but not in the vegetative stage, suggesting that the phenotypic switch to fertility in heterokaryons is associated with major changes in gene expression. Heterokaryon expression is predominantly defined by additive effects of its two nuclear components. Furthermore, allele-specific expression analysis of heterokaryons with varying nuclear ratios show patterns of expression ratios strongly dependent on nuclear ratios in the vegetative stage. By contrast, in the sexual stage, strong deviations of expression ratios indicate a co-regulation of nuclear gene expression in all three lineages. Taken together, our results show two levels of expression control: additive effects suggest a nuclear level of expression, whereas co-regulation of gene expression indicate a heterokaryon level of control.


Assuntos
Neurospora , Alelos , Núcleo Celular/genética , Expressão Gênica , Neurospora/genética
9.
FEBS Lett ; 596(15): 1881-1891, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35735764

RESUMO

Timing by the circadian clock of Neurospora is associated with hyperphosphorylation of frequency (FRQ), which depends on anchoring casein kinase 1a (CK1a) to FRQ. It is not known how CK1a is anchored so that approximately 100 sites in FRQ can be targeted. Here, we identified two regions in CK1a, p1 and p2, that are required for anchoring to FRQ. Mutation of p1 or p2 impairs progressive hyperphosphorylation of FRQ. A p1-mutated strain is viable but its circadian clock is non-functional, whereas a p2-mutated strain is non-viable. Our data suggest that p1 and potentially also p2 in CK1a provide an interface for interaction with FRQ. Anchoring via p1-p2 leaves the active site of CK1a accessible for phosphorylation of FRQ at multiple sites.


Assuntos
Relógios Circadianos , Neurospora crassa , Neurospora , Caseína Quinases/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética , Neurospora/metabolismo , Neurospora crassa/genética
10.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293585

RESUMO

Neurospora crassa propagates through dissemination of conidia, which develop through specialized structures called conidiophores. Recent work has identified striking variation in conidiophore morphology, using a wild population collection from Louisiana, United States of America to classify 3 distinct phenotypes: Wild-Type, Wrap, and Bulky. Little is known about the impact of these phenotypes on sporulation or germination later in the N. crassa life cycle, or about the genetic variation that underlies them. In this study, we show that conidiophore morphology likely affects colonization capacity of wild N. crassa isolates through both sporulation distance and germination on different carbon sources. We generated and crossed homokaryotic strains belonging to each phenotypic group to more robustly fit a model for and estimate heritability of the complex trait, conidiophore architecture. Our fitted model suggests at least 3 genes and 2 epistatic interactions contribute to conidiophore phenotype, which has an estimated heritability of 0.47. To uncover genes contributing to these phenotypes, we performed RNA-sequencing on mycelia and conidiophores of strains representing each of the 3 phenotypes. Our results show that the Bulky strain had a distinct transcriptional profile from that of Wild-Type and Wrap, exhibiting differential expression patterns in clock-controlled genes (ccgs), the conidiation-specific gene con-6, and genes implicated in metabolism and communication. Combined, these results present novel ecological impacts of and differential gene expression underlying natural conidiophore morphological variation, a complex trait that has not yet been thoroughly explored.


Assuntos
Neurospora crassa , Neurospora , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Interação Gene-Ambiente , Neurospora/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fenômica , Esporos Fúngicos/genética , Transcriptoma
11.
Nucleic Acids Res ; 49(16): 9404-9423, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417614

RESUMO

Essential cellular functions require efficient production of many large proteins but synthesis of large proteins encounters many obstacles in cells. Translational control is mostly known to be regulated at the initiation step. Whether translation elongation process can feedback to regulate initiation efficiency is unclear. Codon usage bias, a universal feature of all genomes, plays an important role in determining gene expression levels. Here, we discovered that there is a conserved but codon usage-dependent genome-wide negative correlation between protein abundance and CDS length. The codon usage effects on protein expression and ribosome flux on mRNAs are influenced by CDS length; optimal codon usage preferentially promotes production of large proteins. Translation of mRNAs with long CDS and non-optimal codon usage preferentially induces phosphorylation of initiation factor eIF2α, which inhibits translation initiation efficiency. Deletion of the eIF2α kinase CPC-3 (GCN2 homolog) in Neurospora preferentially up-regulates large proteins encoded by non-optimal codons. Surprisingly, CPC-3 also inhibits translation elongation rate in a codon usage and CDS length-dependent manner, resulting in slow elongation rates for long CDS mRNAs. Together, these results revealed a codon usage and CDS length-dependent feedback mechanism from translation elongation to regulate both translation initiation and elongation kinetics.


Assuntos
Uso do Códon/genética , Proteínas Fúngicas/genética , Elongação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , Proteínas Quinases/genética , Códon/genética , Fator de Iniciação 2 em Eucariotos/genética , Retroalimentação Fisiológica , Neurospora/genética , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteínas/genética , Ribossomos/genética
12.
Lett Appl Microbiol ; 73(4): 495-505, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34265094

RESUMO

The mitochondrial genome of Neurospora crassa has been less studied than its nuclear counterpart, yet it holds great potential for understanding the diversity and evolution of this important fungus. Here we describe a new mitochondrial DNA (mtDNA) complete sequence of a N. crassa wild type strain. The genome with 64 839 bp revealed 21 protein-coding genes and several hypothetical open reading frames with no significant homology to any described gene. Five large repetitive regions were identified across the genome, including partial or complete genes. The largest repeated region holds a partial nd2 section that was also detected in Neurospora intermedia, suggesting a rearrangement that occurred before the N. crassa speciation. Interestingly, N. crassa has a palindrome adjacent to the partial nd2 repeated region possibly related to the genomic rearrangement, which is absent in N. intermedia. Finally, we compared the sequences of the three available N. crassa complete mtDNAs and found low levels of intraspecific variability. Most differences among strains were due to small indels in noncoding regions. The revisiting of the N. crassa mtDNA forms the basis for future studies on mitochondrial genome organization and variability.


Assuntos
Genoma Mitocondrial , Neurospora crassa , Neurospora , DNA Fúngico , DNA Mitocondrial/genética , Neurospora/genética , Neurospora crassa/genética
13.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875604

RESUMO

Meiotic drive elements cause their own preferential transmission following meiosis. In fungi, this phenomenon takes the shape of spore killing, and in the filamentous ascomycete Neurospora sitophila, the Sk-1 spore killer element is found in many natural populations. In this study, we identify the gene responsible for spore killing in Sk-1 by generating both long- and short-read genomic data and by using these data to perform a genome-wide association test. We name this gene Spk-1 Through molecular dissection, we show that a single 405-nt-long open reading frame generates a product that both acts as a poison capable of killing sibling spores and as an antidote that rescues spores that produce it. By phylogenetic analysis, we demonstrate that the gene has likely been introgressed from the closely related species Neurospora hispaniola, and we identify three subclades of N. sitophila, one where Sk-1 is fixed, another where Sk-1 is absent, and a third where both killer and sensitive strain are found. Finally, we show that spore killing can be suppressed through an RNA interference-based genome defense pathway known as meiotic silencing by unpaired DNA. Spk-1 is not related to other known meiotic drive genes, and similar sequences are only found within Neurospora These results shed light on the diversity of genes capable of causing meiotic drive, their origin and evolution, and their interaction with the host genome.


Assuntos
Introgressão Genética , Neurospora/genética , Interferência de RNA , Sequências Repetitivas de Ácido Nucleico , Cromossomos Fúngicos
14.
Evolution ; 75(5): 1150-1169, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764512

RESUMO

Meiotic drivers (MDs) are selfish genetic elements that are able to become overrepresented among the products of meiosis. This transmission advantage makes it possible for them to spread in a population even when they impose fitness costs on their host organisms. Whether an MD can invade a population, and subsequently reach fixation or coexist in a stable polymorphism, depends on the one hand on the biology of the host organism, including its life cycle, mating system, and population structure, and on the other hand on the specific fitness effects of the driving allele on the host. Here, we present a population genetic model for spore killing, a type of drive specific to fungi. We show how ploidy level, rate of selfing, and efficiency of spore killing affect the invasion probability of a driving allele and the conditions for its stable coexistence with a nondriving allele. Our model can be adapted to different fungal life cycles, and is applied here to two well-studied genera of filamentous ascomycetes known to harbor spore-killing elements, Neurospora and Podospora. We discuss our results in the light of recent empirical findings for these two systems.


Assuntos
Neurospora/genética , Podospora/genética , Esporos Fúngicos , Genes Fúngicos , Genética Populacional , Meiose , Ploidias , Sequências Repetitivas de Ácido Nucleico , Autofertilização
15.
Int J Dev Biol ; 64(1-2-3): 29-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32659014

RESUMO

This article describes some of the research contributions made by Prof. Ramesh Maheshwari and his colleagues at the Indian Institute of Science, Bangalore. These include (1) the understanding of the Neurospora life cycle in agricultural (sugarcane) fields, (2) identification of Neurospora mutants that trigger vegetative spore development via microcycle conidiation, and (3) isolation of wild Neurospora strains in which the essential immortality of the fungal mycelia is subverted.


Assuntos
Senescência Celular , Proteínas Fúngicas/genética , Instabilidade Genômica , Mitocôndrias/genética , Mutação , Neurospora/fisiologia , Plasmídeos/genética , Proteínas Fúngicas/metabolismo , Genoma Mitocondrial , Neurospora/genética
16.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32020906

RESUMO

The T(EB4)Nta, T(IBj5)Nta, and T(B362i)NtA strains were constructed by introgressing the insertional translocations EB4, IBj5, and B362i from Neurospora crassa into the related species N. tetrasperma. The progeny from crosses of T(IBj5)Nta and T(B362i)NtA with opposite mating-type derivatives of the standard N. tetrasperma strain 85 exhibited a unique and unprecedented transmission ratio distortion (TRD) that disfavored homokaryons produced following alternate segregation relative to those produced following adjacent-1 segregation. The TRD was not evident among the [mat A + mat a] dikaryons produced following either segregation. Further, crosses of the T(IBj5)Nta and T(B362i)NtA strains with the Eight spore (E) mutant showed an unusual ascus phenotype called 'max-4'. We propose that the TRD and the max-4 phenotype are manifestations of the same Bateson-Dobzhansky-Muller incompatibility (BDMI). Since the TRD selects against 2/3 of the homokaryotic progeny from each introgression cross, the BDMI would have enriched for the dikaryotic progeny in the viable ascospores, and thus, paradoxically, facilitated the introgressions.


Assuntos
Genes Fúngicos , Neurospora crassa/genética , Neurospora/genética , Esporos Fúngicos/genética , Translocação Genética , Ascomicetos , Fenótipo
17.
G3 (Bethesda) ; 10(4): 1261-1270, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32001556

RESUMO

The filamentous fungus Neurospora crassa, a model microbial eukaryote, has a life cycle with many features that make it suitable for studying experimental evolution. However, it has lacked a general tool for estimating relative fitness of different strains in competition experiments. To remedy this need, we constructed N. crassa strains that contain a modified csr-1 locus and developed an assay for detecting the proportion of the marked strain using a post PCR high resolution melting assay. DNA extraction from spore samples can be performed on 96-well plates, followed by a PCR step, which allows many samples to be processed with ease. Furthermore, we suggest a Bayesian approach for estimating relative fitness from competition experiments that takes into account the uncertainty in measured strain proportions. We show that there is a fitness effect of the mating type locus, as mating type mat a has a higher competitive fitness than mat A The csr-1* marker also has a small fitness effect, but is still a suitable marker for competition experiments. As a proof of concept, we estimate the fitness effect of the qde-2 mutation, a gene in the RNA interference pathway, and show that its competitive fitness is lower than what would be expected from its mycelial growth rate alone.


Assuntos
Neurospora crassa , Neurospora , Teorema de Bayes , Genes Fúngicos Tipo Acasalamento , Neurospora/genética , Neurospora crassa/genética , Reprodução
18.
Methods Mol Biol ; 2090: 313-336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31975173

RESUMO

The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research.


Assuntos
Genômica/métodos , Neurospora/genética , Evolução Molecular , Especiação Genética , Modelos Biológicos
19.
J Mol Biol ; 432(12): 3466-3482, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31954735

RESUMO

Circadian rhythms are generated by transcriptional negative feedback loops and require histone modifications and chromatin remodeling to ensure appropriate timing and amplitude of clock gene expression. Circadian modifications to histones are important for transcriptional initiation and feedback inhibition serving as signaling platform for chromatin-remodeling enzymes. Current models indicate circadian-regulated facultative heterochromatin (CRFH) is a conserved mechanism at clock genes in Neurospora, Drosophila, and mice. CRFH consists of antiphasic rhythms in activating and repressive modifications generating chromatin states that cycle between transcriptionally permissive and nonpermissive. There are rhythms in histone H3 lysine 9 and 27 acetylation (H3K9ac and H3K27ac) and histone H3 lysine 4 methylation (H3K4me) during activation; while deacetylation, histone H3 lysine 9 methylation (H3K9me) and heterochromatin protein 1 (HP1) are hallmarks of repression. ATP-dependent chromatin-remodeling enzymes control accessibility, nucleosome positioning/occupancy, and nuclear organization. In Neurospora, the rhythm in facultative heterochromatin is mediated by the frequency (frq) natural antisense transcript (NAT) qrf. While in mammals, histone deacetylases (HDACs), histone H3 lysine 9 methyltransferase (KMT1/SUV39), and components of nucleosome remodeling and deacetylase (NuRD) are part of the nuclear PERIOD complex (PER complex). Genomics efforts have found relationships among rhythmic chromatin modifications at clock-controlled genes (ccg) revealing circadian control of genome-wide chromatin states. There are also circadian clock-regulated lncRNAs with an emerging function that includes assisting in chromatin dynamics. In this review, we explore the connections between circadian clock, chromatin remodeling, lncRNAs, and CRFH and how these impact rhythmicity, amplitude, period, and phase of circadian clock genes.


Assuntos
Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Heterocromatina/genética , Metiltransferases/genética , Proteínas Repressoras/genética , Animais , Montagem e Desmontagem da Cromatina/genética , Drosophila melanogaster/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Camundongos , Neurospora/genética , RNA Longo não Codificante/genética
20.
J Comput Biol ; 27(6): 868-876, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31553226

RESUMO

Next-generation sequencing technologies are producing genomic data at ever-increasing rates. It has become a challenge to store, transmit, and process the massive quantity of data, creating a vital need for a tool that compresses genomic data produced in a lossless manner, thus reducing storage space and speeding up data transmission. Data centers are adopting either of the two general-purpose genomic data compressors: gzip or bzip2. Both these use Huffman encoding, although they implement it in different ways. However, neither of these two takes advantage of properties of DNA data, such as the presence of a small alphabet and many repeats. Huffman encoding compression can be improved by exploiting DNA characteristics. Recently, it has been shown that Huffman encoding compression can be improved by creating an unbalanced Huffman tree (UHT), which demonstrates significant advances in compression over a standard Huffman tree used in both gzip and bzip2. However, the UHT created is greedy. This article proposes an improved nongreedy UHT (NUHT), a lossless nonreference-based fasta and multifasta compressor. We compare our algorithm with two well-known general-purpose compressors, gzip and bzip2, as well as with UHT, a DNA-specific compressor based on Huffman tree. Our algorithm outperforms all three in terms of compression ratio and is seven times faster than UHT.


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Cromossomos Humanos Par 22/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neurospora/genética , Saccharomyces/genética , Software , Vibrio cholerae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA